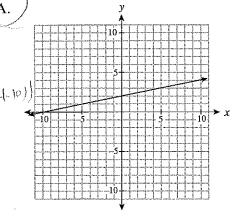
PART A: MULTIPLE-CHOICE QUESTIONS (calculator not permitted)

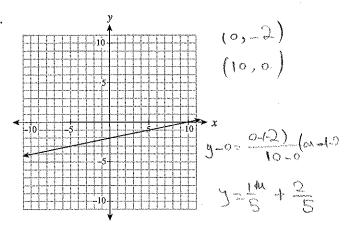
Value: 12 marks

Suggested Time: 30 minutes Allowable Time: 40 minutes

INSTRUCTIONS: No calculator may be used for this part of the examination. For each question, select the **best** answer and record your choice on the **blue Answer Sheet** provided. Using an HB pencil, completely fill in the bubble that has the letter corresponding to your answer. You have a maximum of 40 minutes to work on this section.

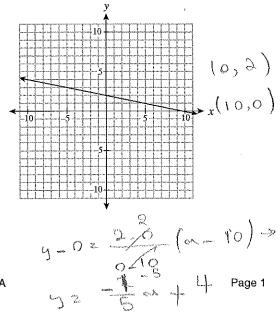

You have Examination Booklet Form A. In the box above #1 on your Answer Sheet, fill in the bubble as follows.

Exam Booklet Form/ Cahier d'examen



1. Which graph represents the relation x - 5y + 10 = 0?


10, 21 52 5 A + 2


B.

C.

Ď.

Foundations of Mathematics and Pre-Calculus 10 - 2010-2011 Sample A

Use the following graph to answer question 2.

2. Which of the following equations describes the linear relation graphed above?

I.
$$y = \frac{4}{3}x + 4$$

II. $y - 8 = -\frac{4}{3}(x+3)$

III. $4x + 3y - 12 = 0$
 $y = \frac{4}{3}x + 4$

- A. II only
- B. I and II only
- C. I and III only
- D. II and III only
- 3. Determine the equation of a line, in slope-intercept form, that passes through the points (6, 1) and (-10, 9).

A.
$$y = -\frac{1}{2}x + 4$$

B.
$$y = -\frac{1}{2}x - 2$$

C.
$$y = -2x + 8$$

D.
$$y = -2x + 13$$

4. Solve for y in the following system of equations:

- J= +3 a=2
- 5. The cost C, in dollars, of renting a hall for the prom is given by the formula C(n) = 500 + 4n, where n is the number of students attending the prom. Calculate the cost of renting the hall if 70 students attend.

6. Which of the following statements are true?

		1
I.	$\sqrt{4} = 2$ since $2 \times 2 = 4$ $\sqrt{2}$	
II.	$\sqrt{8} = 4 \text{ since } 4 + 4 = 8 \qquad \qquad \bigcirc$	3×2 = 212 X
III.	$\sqrt[3]{27} = 3 \text{ since } 3 \times 3 \times 3 = 27$	3(3) 2 3 V
IV.	$\sqrt[3]{81} = 9 \text{ since } 9 \times 9 = 81$	3/2/2 = 2/2

- B. I and IV only
- C. II and III only
- D. II and IV only

7. Which of the following statements are true?

I.	The factors of 24 are 2, 3, 4, 6, 8 and 12.
Π.	The prime factorization of 24 is $2^3 \times 3^1$.
III.	The prime factors of 24 are 2 and 3.
IV.	$\sqrt{24}$ is an irrational number.

- A. I and IV only
- B. II and III only
- C. II, III and IV only
- D. I, II, III and IV

8. Simplify: $\sqrt{72}$

- $2\sqrt{6}$
- B. $6\sqrt{2}$
- C. $18\sqrt{2}$
- D. $36\sqrt{2}$

9. Which pattern could be used to predict 3^{-4} ?

B.
$$3^3$$
 | 9
 3^2 | 6
 3^1 | 3
 3^0 | 0
 3^{-1} | $-\frac{1}{3}$
 3^{-2} | $-\frac{1}{6}$
 3^{-3} | $-\frac{1}{9}$

C.
$$3^3$$
 | 27
 3^2 | 9
 3^1 | 3
 3^0 | 1
 3^{-1} | -3
 3^{-2} | -9
 3^{-3} | -27

D.
$$3^3$$
 | 9
 3^2 | 6
 3^1 | 3
 3^0 | 0
 3^{-1} | -3
 3^{-2} | -6
 3^{-3} | -9

10. Evaluate:
$$16^{-\frac{3}{4}}$$

A. –8

$$2^{+(-\frac{3}{4})}$$
 = $\frac{-3}{2}$ = $(\frac{3}{3})$ = $\frac{1}{8}$

$$\left(\begin{array}{cccc} B. & \frac{1}{8} \end{array}\right)$$

C.
$$\frac{1}{2}$$

- 11. A baker gets his muffin boxes from the United States. The tallest muffins he bakes are 11 cm. Estimate the height of the smallest box in which the muffins will fit.
 - A. 30 inches tall
 - B. 10 inches tall
 - C. 5 inches tall
 - D. 4 inches tall

12. Jasdeep and Kelsey converted 177 ounces into kilograms, as shown below.

Jasdeep's Solution	Kelsey's Solution
$177 \text{ oz} \times \frac{28.35 \text{ g}}{1 \text{ oz}} \times \frac{1 \text{ kg}}{1000 \text{ g}} = 5017950 \text{ kg}$	$177 \text{ oz} \times \frac{1 \text{ oz}}{28.35 \text{ g}} \times \frac{1 \text{ kg}}{1000 \text{ g}} = 0.0062 \text{ kg}$

Which statement below is true?

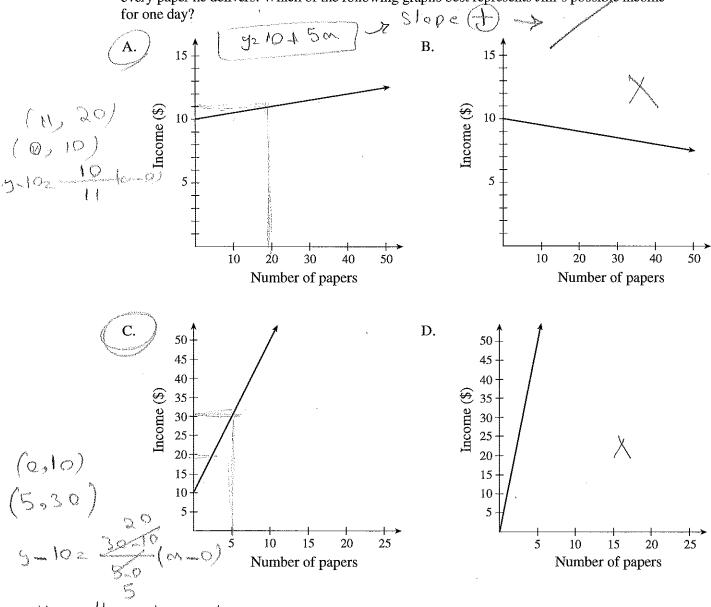
- A. Only Kelsey is correct because the units cancel.
- B. Only Jasdeep is correct because the units cancel.
- C. Only Kelsey is incorrect because the conversion factors are incorrect.
- D. They are both incorrect for different reasons.

This is the end of Part A (calculator not permitted).

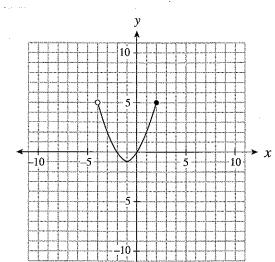
If there is some time left, you have two options:

- i) Make sure you have answered all the questions. You will not be able to go back to this section at the end of 40 minutes.
- ii) You may proceed to the rest of the examination without the use of a calculator; there are many questions that do not require a calculator. Make sure you flag any questions you skip to remember to go back to them later.

Do not access your calculator until directed by the supervisor. At the end of the 40 minutes, the supervisor will give you permission to access your calculator.

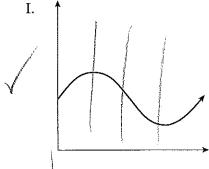

PART B: MULTIPLE-CHOICE QUESTIONS (calculator permitted)

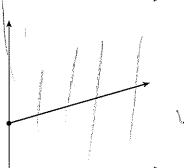
Value: 42 marks


Suggested Time: 75 minutes

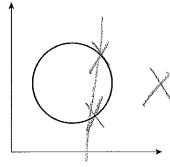
INSTRUCTIONS: For each question, select the **best** answer and record your choice on the **white Answer Sheet** provided. Using an HB pencil, completely fill in the bubble that has the letter corresponding to your answer.

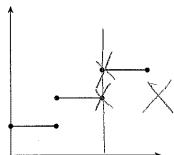
13. Jim delivers newspapers. He gets paid 10 dollars for every day of work, plus 5 cents for every paper he delivers. Which of the following graphs best represents Jim's possible income for one day?

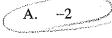

14. Determine the domain of the relation graphed below.


- A. (-4, 2]
- B. [-4, 2)
- C. [-1, 5)
- D. [-1, 5]

15. Which of the following relations are also functions?

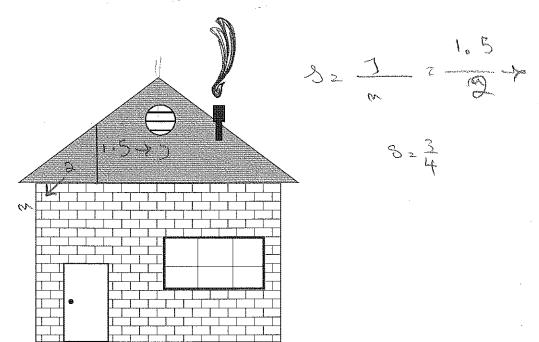



III.


II.

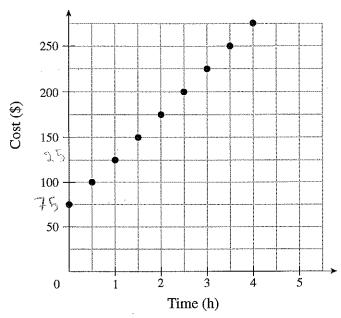
IV.

16. Calculate the slope between the points (7, -3) and (4, 3).



B.
$$-\frac{1}{2}$$

17. Use a ruler to determine the slope of the roof shown below.


Note: This diagram is drawn to scale.

- D. $\frac{4}{3}$
- 18. A line with an undefined slope passes through the points (-2, 1) and (p, q). Which of the following points could be (p, q)?
 - A. (1, 0)
 - B. (0, 1)
- - D. (-2, 0)

- or and to my undefined y
- 2. P20+ P2-2

Use the graph below to answer question 19.

Cost of Hiring an Electrician vs. Time

1 400 + 75 = 475 50x8+75 = 476

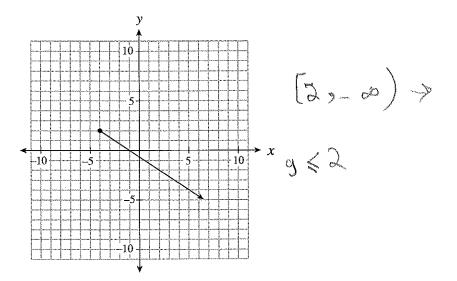
- 19. What is the cost of hiring an electrician for 8 hours?
 - A. \$550
 - B. \$475
 - C. \$400
 - D. \$275
- 20. Two isosceles triangles have the same height. The slopes of the sides of triangle A are double the slopes of the corresponding sides of triangle B. How do the lengths of their bases compare?
 - A. The base of A is quadruple that of B.
 - B. The base of A is double that of B.
 - C. The base of A is half that of B.
 - D. The base of A is one quarter that of B.

21. Which of the following relations could be produced by $y = \frac{2}{5}x - 6$?

I.	2x - 5y - 30 = 0
II.	$\{(15, 0), (10, -2), (-5, -8), (-10, -10)\}$
Ш.	y 10 5 10 5 10 5 10 10 10 10 10 10 10 10 10 10

- 9=02 0+10 (m-15)
 922 3 0 6 V
- (0,-6) (-5,-4) $9+4=\frac{-6+4}{0+5}(x+5)$ (-5,-4)
- 3 = 2 a = 6

- A. I only
- B. II only
- C. I and II only
- D. I, II and III
- 22. Determine the slope of the linear relation 3x + 5y + 15 = 0.



B.
$$\frac{3}{5}$$

$$C. -\frac{3}{5}$$

D.
$$-\frac{5}{3}$$

23. Determine the range of the linear relation graphed below.

- A. $y \le -4$ B. $y \le 2$ C. $y \ge -4$
- D. $y \ge 2$
- 24. Which of the following coordinates are intercepts of the linear relation 2x 3y + 30 = 0?

I.	(0, 10)	2x0-3(16)+36=0 V
II.	$\left(0,\frac{2}{3}\right)$	2x0-3(3/3)+30 x 0
Ш.	(-10, 0)	2(-10)-3/0+30 ×0
IV.	(-15, 0)	10

D. II and IV only

25. Kelly explained her method for graphing the linear relation $y = -\frac{2}{3}x + 7$ as follows:

CONTROL OF THE PROPERTY OF THE	Steps
I.	Place a dot on the y-axis at positive 7.
II.	Move up two on the y-axis to positive 9.
III.	From the positive 9, move to the left three spots and place a dot there.
IV.	Draw a line through the two dots.

Where did Kelly make the first mistake in her explanation?

- A. Step I
- B. Step II
- Step III
- There is no mistake.
- 26. Alex bought 144 bagels for \$80. His profit was \$75 once he had sold 100 bagels. Which equation below represents Alex's profit P, as a function of the number sold, n?

A.
$$P = -0.05n + 80$$

B.
$$P = 0.05n - 80 \text{ } \checkmark$$

C.
$$P = 0.75n$$

D.
$$P = 1.55n - 80$$

27. Determine the slope-intercept equation of the line that is parallel to $y = (\frac{2}{5}x) - 3$ and passes through the point (0, 5).

A.
$$y = -\frac{5}{2}x - 3$$

B.
$$y = -\frac{5}{2}x + 5$$

C.
$$y = \frac{2}{5}x + 3$$

$$D \quad y = \frac{2}{5}x + 5$$

- The cost to insure jewellery is a fixed amount plus a percentage of the value of the jewellery. It costs \$32 to insure \$1000 worth of jewellery or \$44.50 to insure \$3500 worth of jewellery. What is the fixed amount to insure jewellery?
 - A. \$27.00
 - B. \$31.25
 - C. \$44.65
 - D. \$58.82

- (32, 1000) (44.5, 3500) 3500=3500=3500 (44.5, 3500) 44.5=32 (32.5) (32.5) (32.5)
- 29. Lines A and B are perpendicular and have the same x-intercept. The equation of line A is x + 2y - 4 = 0. Determine the y-intercept of line B.
- - 0= 2(4)+b + 6--8
- Which of the following systems of linear equations has a solution of (-3, 4)?

- B. $\begin{cases} 2x 3y = 6 \\ y = 3x + 13 \end{cases}$ $\begin{cases} 2x + 3y = 6 \\ y = 3x 13 \end{cases}$ $\begin{cases} 2x + 3y = 6 \\ y = 3x 13 \end{cases}$ $\begin{cases} 2x + 3y = 6 \\ 3x 13 \end{cases}$

- D. $\begin{cases} 2x+3y=6 \\ y=3x+13 \end{cases}$ $\Rightarrow x + 3 = 3 \Rightarrow x + 3 \Rightarrow x +$
- 42 H

31. Two planes have a cruising speed of 570 km/h without wind. The first plane flies for 12 hours against a constant headwind. The second plane flies for 10 hours in the opposite direction with the same wind (a tailwind). The second plane flies 370 km less than the first plane.

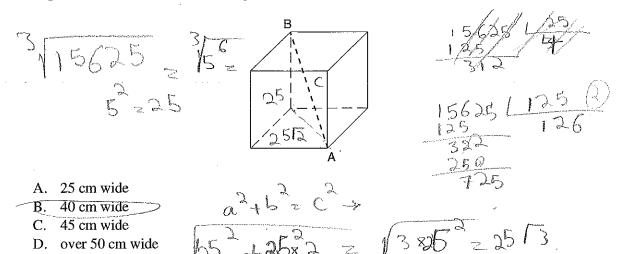
Determine two equations that could be used to solve for the wind speed, w, and the distance travelled by the first plane, d.

A.
$$(570 - w)(12) = d$$

 $(570 + w)(10) = d - 370$

B.
$$(570 - w)(12) = d$$

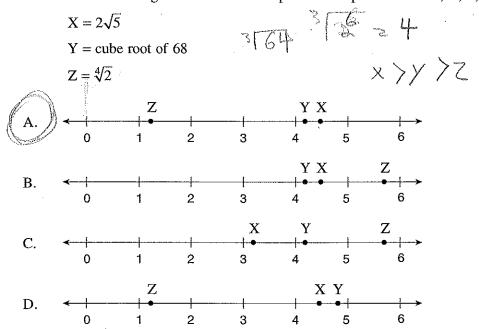
 $(570 + w)(10) = d + 370$


C.
$$(570 + w)(12) = d$$

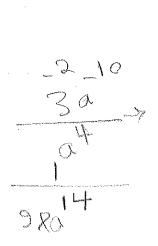
 $(570 - w)(10) = d - 370$

D.
$$(570 + w)(12) = d$$

 $(570 - w)(10) = d + 370$

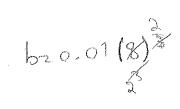

- 32. Which two numbers have the following properties?
 - Their GCF is 12.
- ·12872= 864
- Their LCM is 72.

D. 72 and 864


33. Polar Company has designed an ice block in the shape of a cube. The volume of the cube is 15 625 cm³. Which of the following dimensions is the smallest opening of an ice dispenser that will accommodate length AB?

34. Which of the following number lines best represents the placement of X, Y, Z, given:


35. Chantal made a mistake in her simplification of $\frac{(3a^5)^{-2}}{a^4}$.

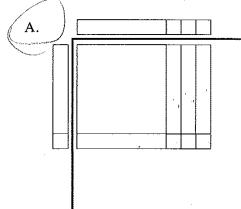

	Steps
I.	$\frac{1}{\left(3a^5\right)^2\left(a^4\right)}$
II.	$\frac{1}{(3)^2(a^5)^2(a^4)}$
IH	$(9)(a^7)(a^4)$
IV.	$\frac{1}{9a^{28}}$

Which step contains her first mistake?

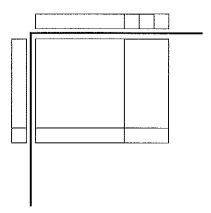
- A. Step I
- B. Step II
- C. Step III
 - D. Step IV
- 36. Simplify: $\left(\frac{25x^a}{125x^3}\right)^3$
 - A. $\frac{x^{3a-9}}{125}$
 - B. $\frac{x^{a-3}}{5}$
 - D. $\frac{x^{27a}}{5}$

37. A research assistant calculated the brain mass, b, of an 8 kg cat. She used the formula $b = 0.01m^{\frac{2}{3}}$, where m is the total mass of the cat.

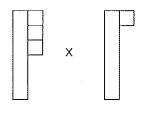
		عر	~
0.01	24	z Q	.04

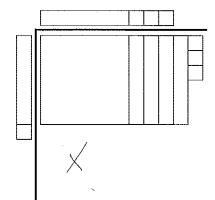

The second secon	Steps
I.	$b = 0.01\sqrt[3]{8^2}$
CII.	$b = 0.01\sqrt[3]{16}$
III.	$b \approx 0.01(2.52)$
IV.	<i>b</i> ≈ 0.025

In which step did the research assistant first make a mistake?


- A. Step I
- B. Step II
- C. Step III
- D. Step IV

	2	4 ~ -	. >
~	4-	, ex -	\mathcal{C} 4


38. Which of the following diagrams best represents the expansion of (x+3)(x+1) pictorially?


В.

C

D.

39. Expand and simplify:
$$(x-4)^{2}$$

A.
$$-x^3 - 12x^2 + 48x - 64$$

B.
$$x^3 + 12x^2 + 48x + 64$$

C.
$$x^3 - 4x^2 + 16x + 64$$

D.
$$x^3 - 64$$

39. Expand and simplify:
$$(x-4)^3$$

$$(x-4)(x^2+6x+16) = (x-4)(x^2+6x+16) = (x-4)(x^2+6x+1$$

A.
$$x^3 - 12x^2 + 48x - 64$$

B. $x^3 + 12x^2 + 48x + 64$ $x^3 - 9x^2 + 16x - 4x^2 + 32x - 64$

40. Katic simplified the expression (x+b)(x+c), where b < 0 and c < 0, to the form $x^2 + gx + k$. What must be true about g and k?

A.
$$g < 0$$
 and $k > 0$

B.
$$g < 0$$
 and $k < 0$

C.
$$g > 0$$
 and $k > 0$

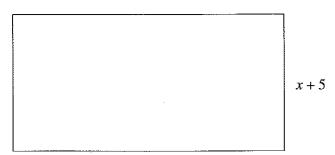
D.
$$g > 0$$
 and $k < 0$

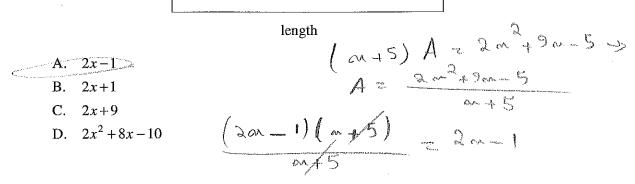
41. Factor:
$$y^2 - 81$$

A.
$$(y-9)^2$$

B.
$$(v+9)^2$$

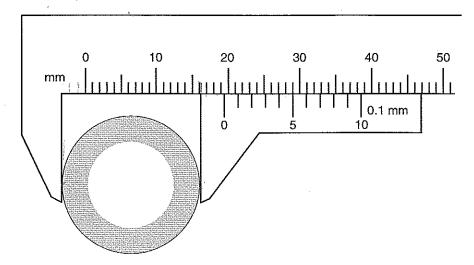
C.
$$(y+9)(y-9)$$


D.
$$(y+3)(y-3)(y+9)$$


42. Which of the following expressions have a factor of x + 2?

I.
$$x^2-4$$
 (at 2) (a 2)
II. $2x^2-x-10$ (2a-5) (a+2)
III. $5x+10$ 5 (a+2)

- A. I only
- B. III only
- C. I and III only
- D. I, II and III

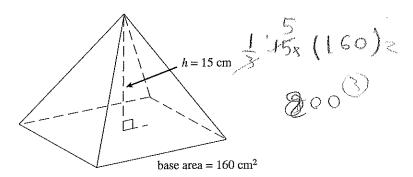

43. Given that the area of the rectangle below is $2x^2 + 9x - 5$, determine the length of the rectangle.

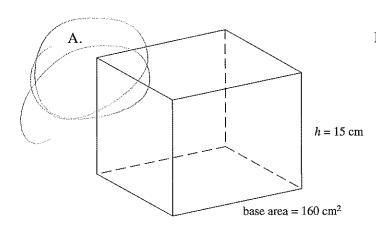
- 44. As an estimation strategy, what could be used to best approximate one centimetre?
 - A. the length of your foot
 - B. the width of your hand
 - C the width of your finger
 - D. the width of a pencil lead

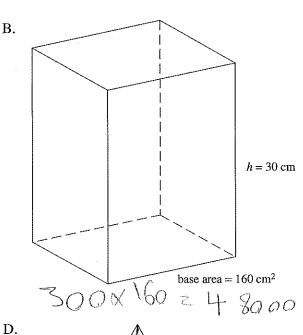
45. Sarah needs to replace the exhaust pipe on her dirt bike. She uses a Vernier calliper to find the diameter of the pipe.

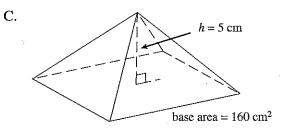
What is the diameter of the pipe?

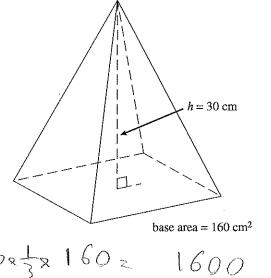
- A. 16.1 mm
- (B. 19.2 mm)
- C. 19.5 mm
- D. 29.0 mm
- 46. On a quiz, students were asked to convert 5 lbs 4 oz to a metric weight.

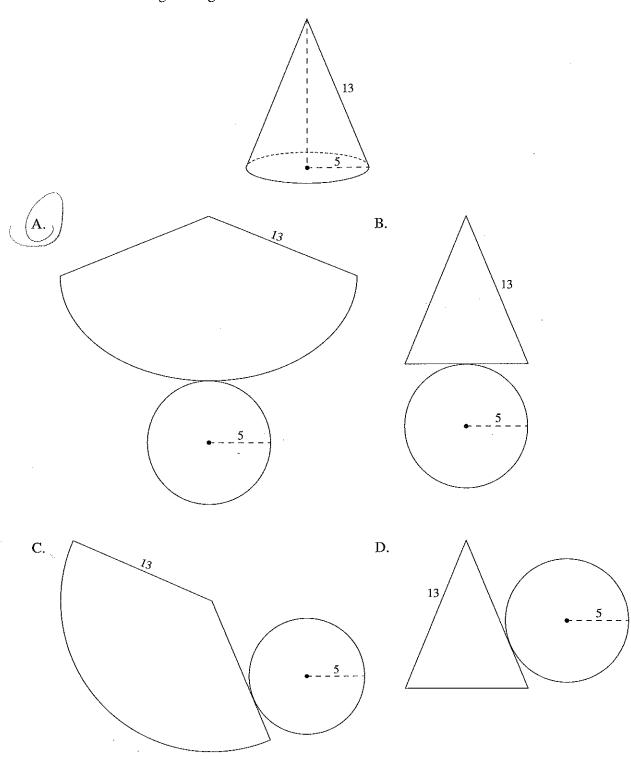

Stan's Solution	Erin's Solution
Step 1 $4 \text{ oz} \times \frac{1 \text{ lb}}{16 \text{ oz}} = 0.25 \text{ lb}$	$5 \text{ lb} \times \frac{16 \text{ oz}}{1 \text{ lb}} = 80 \text{ oz}$
Step 2 $5.25 \text{ lb} \times \frac{0.454 \text{ kg}}{1 \text{ lb}} \approx 2.3835 \text{ kg}$	$84 \text{ oz} \times \frac{28.35 \text{ g}}{1 \text{ oz}} \approx 2381.4 \text{ g}$


How should the teacher mark these two solutions?

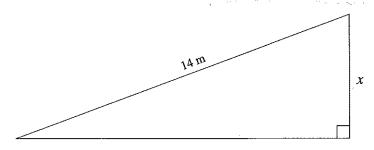

metric


- $\widehat{\underline{A}}$. Only Erin's solution is correct.
- (B) Only Stan's solution is correct.
- Cl Both Stan and Erin gave a correct solution.
- D. Neither Stan nor Erin gave a correct solution.


47. Which of the following shapes has a volume three times larger than the pyramid below?

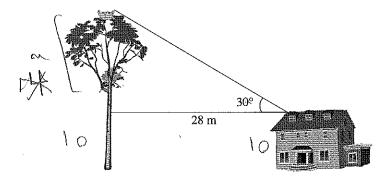


- 48. A cylinder has a surface area of 402 cm². The height is three times greater than the radius. What is the height of the cylinder?
 - A. 8.00 cm
 - B. 10.48 cm
 - C. 12.00 cm
 - D. 16.97 cm


- 1402 = Mr = 11.31196597,
- 49. A bowling ball measures 264 cm in circumference. What is the volume of the smallest cube that will hold this ball?
 - A. approximately 75 000 cm³
 - B. approximately 311 000 cm³
 - C. approximately 594 000 cm³
 - D. approximately 2 300 000 cm³

2471.983

50. Which of the following net diagrams best constructs the cone below?

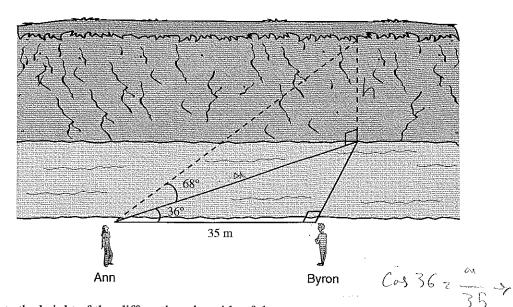


51. Using a protractor, measure one of the unknown angles and determine the length of side x.

Note: This diagram is drawn to scale.

- A. 3.5 m
- B. 4.8 m
- C. 5.1 m
- D. 13.2 m
- 52. In $\triangle ABC$, $\angle C = 90^{\circ}$, AB = 17 cm and AC = 15 cm. Calculate the measure of $\angle ABC$.
 - A. 28°
 - B. 41°
 - C. 49°
 - $\langle D, 62^{\circ} \rangle$
- 810 M2 15 15. 17 M2 6 10 9 2 2 6 2
- 53. A 10 metre tall farmhouse is located 28.0 m away from a tree with an eagle's nest. The angle of elevation from the roof of the farmhouse to the eagle's nest is 30°.

What is the height of the eagle's nest?

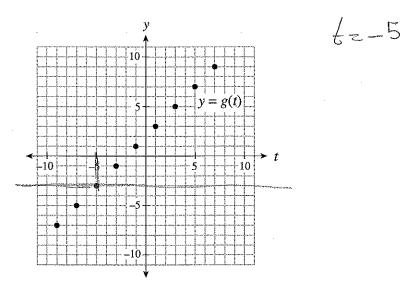

- A. 16 m
- B. 24 m
- C. 26 m
 - D. 48 m

$$6an30 = \frac{\alpha}{28} = \frac{13}{3} \Rightarrow \alpha = 16.16 \Rightarrow 10+16.16 = 26.16 \Rightarrow \frac{1}{2}$$

-\frac{\frac{1}{2}}{13} \tag{7}

Foundations of Mathematics and Pre-Calculus 10 - 2010-2011 Sample A

54. Ann and Byron positioned themselves 35 m apart on one side of a stream. Ann measured the angles, as shown below.



Calculate the height of the cliff on the other side of the stream.

- A. 17.5 m
- B. 62.9 m
- C. 70.1 m
- D. 107.1 m

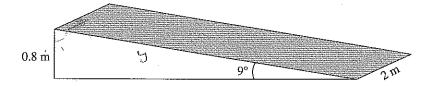
az 28.3155948

55. Given the graph of y = g(t) below, determine the value of t for which g(t) = -3. Answer as an integer.

Record your answer neatly on the Answer Sheet.

56. Solve for x:

$$3x+4y=-16 \Rightarrow (3(4))+4j=-16+$$
 $x=4y$
 $16j=-16+j=-17$
 $0124(-1)+012-4$


Record your answer neatly on the Answer Sheet.

A package of 12 hex bolts and 10 anchor bolts weighs 7 pounds. A second package of 5 hex bolts and 15 anchor bolts weighs 4 pounds. How much does a single hex bolt weigh? Answer in pounds to one decimal place.
Record your answer neatly on the Answer Sheet.
How many integer values are there for k for which $4x^2 + kxy - 9y^2$ is factorable?
Record your answer neatly on the Answer Sheet.

59. Convert 150 pounds into kilograms. Answer to the nearest kilogram.

Record your answer neatly on the Answer Sheet.

60. A ramp is set up using a rectangular piece of plywood (shaded region) as shown below.

Calculate the area of the plywood. Answer in square metres to one decimal place.

Record your answer neatly on the Answer Sheet.

You have Examination Booklet Form A. In the box above #1 on your Answer Sheet, ensure you filled in the bubble as follows.

Exam Booklet Form/ A B C D E F G H Cahier d'examen
--