Chapter 8: Systems of Equations

1. Examine each system of equations and match it with a possible sketch of the system. You do not need to solve the systems to match them.
I) $\quad y=x^{2}+1$

$$
y=-x^{2}+1
$$

\qquad c \qquad
a)

b)

III) $\begin{aligned} y & =x^{2}+1 \\ y & =-x^{2}+4\end{aligned}$

$$
y=-x^{2}+4
$$

\qquad d \qquad
d)

IV)

$$
y=x^{2}+1
$$

$$
y=x+4
$$

\qquad
b \qquad

2. Solve the system of linear-quadratic
equations graphically. Express your answer(s) to the nearest $t \in$

$$
\begin{aligned}
& 3 x+y=4 \\
& y=x^{2}-3 x-1
\end{aligned}
$$

(2.2,-2.7) and (-2.2,10.7)

3. Given the quadratic function $y=x^{2}+4$ and the linear function $y=x+b$, determine all the possible values of b that would result in a system of equations with:
a) two solutions
b) exactly one solution
c) no solution
a) b >4
b) $\mathbf{b}=4$
c) b <4
4. The price, P, in dollars, per share, of a high0tech stock has fluctuated over a 10 -year period according to the equation $P=14+12 t-t^{2}$, where t is time, in years. The price of a second hightech stock has shown a steady increase during the same time period according to the relationship $P=2 t+30$. Algebraically determine for what values the two stock prices will be the same.

\$34 and \$46

5. Explain how you could determine if the given system of quadratic-quadratic equations has zero, one, two, or an infinite number of solutions without solving or using technology.

$$
\begin{aligned}
& y=(x-4)^{2}+2 \\
& y=-(x+3)^{2}-1
\end{aligned}
$$

Compare vertices and opening directions. Never cross -> no solution.

6. Algebraically determine the solution(s) to each system of quadratic-quadratic equations.
a) $\begin{aligned} & y=2 x^{2}+9 x-5 \\ & y=2 x^{2}-4 x+8\end{aligned}$
b) $\begin{aligned} & y=12 x^{2}+17 x-5 \\ & y=-x^{2}+30 x-5\end{aligned}$
$(1,6)$
$(0,-5)$ and $(1,24)$

Chapter 9: Linear \& Quadratic Inequalities

7. Match each inequality with its graph.
a)

b)

c)

d)

I) $2 x+y<3$ \qquad II) $2 x-y \leq 3$ \qquad
III) $2 x-y \geq 3$
$\ldots \quad$ b \qquad
IV) $2 x+y>3$
___d \qquad
8. Write an inequality to describe each graph, given the function defining the boundary parabola.
a) $y>x^{2}+1$

b) $\quad y>=-(x+3)^{2}+2$

9. Explain how each test point can be used to determine the solution region that satisfies the inequality $y>x-2$

Plug in
a) $(0,0)$
b) $(2,-5)$
c) $(-1,1)$
no
yes
10. What linear inequality is shown in the graph?

$$
y<-2 x+4
$$

11. Sketch the graph of $y<x^{2}-6 x+5$. Use a test point to verify the solution region.

12. Use sign analysis to determine the solution of the quadratic inequality $2 x^{2}+9 x-37 \geq 2$.
$x \leq \frac{-9-\sqrt{393}}{4}$ and $x \geq \frac{-9+\sqrt{393}}{4}$
13. Suppose a rectangular area of land is to be enclosed by 1000 m of fence. If the area is to be greater than $60000 \mathrm{~m}^{2}$, what is the range of possible widths of the rectangle?

Width is in between 200 m and 300 m

