Chapter 1: Sequences \& Series

1. Match each term to the correct expression.
I) arithmetic sequence
II) geometric sequence
III) arithmetic series
IV) geometric series
V) convergent series

A $3,7,11,15,19, \ldots$
© $5+1+\frac{1}{5}+\frac{1}{25}+\ldots$
\& $1+2+4+8+16+\ldots$
G $1,3,9,27,81, \ldots$
F. $2+5+8+11+14$
2. Classify each sequence as arithmetic or geometric. State the value of the common difference or common ratio. Then, write the next three terms in each sequence.
a) $27,18,12,8, \ldots \quad r=\frac{18}{27}=\frac{2}{3} \quad \frac{16}{3}, \frac{32}{9}, \frac{64}{27}$
b) $17,14,11,8, \ldots \quad d=14+17=-3 \quad 5,2,-1$ Arithmetic
c) $-21,-16,-11,-6, \ldots \quad d=-16-(-21)=5 \quad-1,4,9$ Arithmetic
d) $3,-6,12,-24, \ldots \quad r=-\frac{6}{3}=-2$
Geometric $48,-96,192$
3. For each arithmetic sequence, determine the general term. Express your answer in simplified form.

$$
t_{n}=t_{1}+(n-1) d
$$

a) $18,15,12,9, \ldots$

$$
\begin{array}{rr}
d=-3 & t_{n} \\
t_{1}=18+(n-1)(-3) \\
& =18-3 n+3 \\
t_{n} & =-3 n+21
\end{array}
$$

b) $1, \frac{5}{2}, 4, \frac{11}{2}, \ldots$

$$
d=\frac{3}{2}
$$

$$
t_{1}=1
$$

$$
\begin{aligned}
t_{n} & =1+(n-1)\left(\frac{3}{2}\right) \\
& =1+\frac{3}{2} n-\frac{3}{2} \\
t_{n} & =\frac{3}{2} n-\frac{1}{2}
\end{aligned}
$$

4. Use the general term to determine t_{20} in the geometric sequence $2,-4,8,-16, \ldots$.

$$
\begin{aligned}
t_{n} & =t_{1} r^{n-1} \\
r & =-2 \\
t_{1} & =2
\end{aligned}
$$

$$
\begin{array}{ll}
t_{n}=2(-2)^{n-1} \\
t_{20}=2(-2)^{20-1} & t_{20}=-1048576
\end{array}
$$

$$
\begin{aligned}
& \text { 5. a) What is } S_{12} \text { for the arithmetic series with a common difference of } 3 \text { and } t_{12}=31 ? \\
& \begin{array}{lll}
31=t_{1}+(12-1)(3) & S_{n}=\frac{n}{2}\left(t_{1}+t_{n}\right) & S_{12}=\frac{12}{2}(-2+31) \\
t_{1}=? & S_{12}=174
\end{array}
\end{aligned}
$$

b) What is S_{5} for a geometric series where $t_{1}=4$ and $t_{10}=78732$?

$$
\begin{array}{rlr}
S_{n}=\frac{-1,\left(r^{n-1}\right)}{r-1} & 78732 & =4(r)^{9} \\
\sqrt[9]{19683} & =r & S_{5}=\frac{4\left(3^{5}-1\right)}{3-1} \\
3 & =r & S_{5}=484
\end{array}
$$

6. Phytoplankton, or algae, is a nutritional supplement used in natural health programs. Canadian Pacific Phytoplankton Ltd. is located in Nanaimo, British Columbia. The company can grow $10 t$ of marine phytoplankton on a regular 11 day cycle. Assume this cycle continues.
a) Create a graph showing the amount of phytoplankton produced for the first five cycles of production.
b) Write the general term for the sequence produced.

$$
\begin{array}{ll}
t_{1}=0 \\
d=10 & t_{n}=0+(n-1)(10)
\end{array}
$$

7. The Living Shangri-La is the tallest building in Metro Vancouver. The ground floor of the building is 5.8 m high, and each floor above the ground floor is 3.2 m high. There are 62 floors altogether, including the ground floor. How tall is the building?

$$
\begin{aligned}
& t_{1}=5.8 \\
& d=3.2 \\
& t_{62}=? \quad t_{62}=5.8+(62-1)(3.2) \\
& t_{62}=201 \mathrm{~m}
\end{aligned}
$$

8. Tristan and Julie are preparing a math display for the school open house. Both students create posted to debate the following questions:

Does $0.999 \ldots=1$?
Julie's Poster
$0.999 . . . \neq 1$
$0.999 . . .=0.9999999999999 \ldots$
The decimal will continue to infinity and will never reach exactly one.

Tristan's Poster

0.999 ... $=1$

Rewrite 0.999 ... In expanded form.

$$
\frac{9}{10}+\frac{9}{100}+\frac{9}{1000}+\cdots
$$

This can be written as a geometric series where $t_{1}=\frac{9}{10}$ and $r=$
a) Finish Tristan's poster by determining the value of the common ratio and then finding the sum of the infinite geometric series.

$$
r=\frac{\frac{9}{100}}{\frac{9}{10}}=\frac{7}{100} \times \frac{10}{9}=\frac{1}{10} \quad S_{\infty}=\frac{t_{1}}{1-r}=\frac{\frac{9}{10}}{1-\frac{1}{10}}=\frac{\frac{9}{10}}{\frac{9}{10}}=\frac{9}{10} \times \frac{10}{9}=1
$$

b) Which student do you think correctly answered the question? Explain.

Tristan! At infinity it will reach I

Chapter 2: Trigonometry

1. Determine the exact distance, in simplified form, from the origin to a point $P(-2,4)$ on the terminal arm of an angle.

2. Point $\mathrm{P}(15,8)$ is on the terminal arm of angle θ. Determine the exact values for $\sin \theta, \cos \theta$ and $\tan \theta$

3. Sketch each angle in standard position and determine the measure of the reference angle.
a) 40°
b) 120°
c) 225°
d) 300°

$\theta_{R}=40^{\circ}$

$\theta_{R}=60^{\circ}$

$$
\theta_{R}=45^{\circ}
$$

$\theta_{R}=60^{\circ}$
4. Determine the exact value of each trigonometric ratio.

a) $\stackrel{t}{\sin 405^{\circ}}$

b) $\underset{\cos 330^{\circ}}{t} \quad \Theta_{R}=30^{\circ}$

$$
\cos 30^{\circ}=\frac{\sqrt{3}}{2}
$$

d) $\cos 150^{\circ} \quad \theta_{R}=30^{\circ}$

$$
\cos 30^{\circ}=\frac{\sqrt{3}}{2} \rightarrow-\frac{\sqrt{3}}{2}
$$

5. Radio collars are used to track polar bears by sending signals via GPS to receiving stations. Two receiving stations are 9 km apart along a straight road. At station A, the signal from one of the collars comes from a direction of 49° from the road. At station B, the signal from the same collar comes from a direction of 65° from the road. Determine the distance the polar bear is from each of the stations.
A

$$
\frac{x}{\sin 65^{\circ}}=\frac{9}{\sin 66^{\circ}} \quad x=8.9 \mathrm{~km}
$$

$$
\frac{y}{\sin 49^{\circ}}=\frac{9}{\sin 66^{\circ}}
$$

6. Waterton Lakes National Park in Alberta is a popular site for birdwatching, with over 250 species of birds recorded. Chelsea spots a rare pileated woodpecker in a tree at an angle of elevation of 52°. After walking 16 m closer to the tree she determines the new angle of elevation to be 70°.
a) Sketch and label a diagram to represent the situation.

b) What is the closest distance th at Chelsea is from the bird, to the nearest tenth of a meter?

7. In $\Delta R S T, \mathrm{RT}=2 \mathrm{~m}, \mathrm{ST}=1.4 \mathrm{~m}$, and $\angle R=30^{\circ}$. Determine the measure of obtuse $\angle S$ to the nearest tenth of a degree.

$$
\frac{\sin 30^{\circ}}{14}=\frac{\sin 5}{2}
$$

\therefore The angle between the starting leg and the finishing leg is 72°.

