Date:

Block:

Multiple Choice For #1 to #5, choose the best answer.

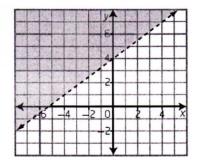
1. An inequality that is equivalent to 3x - 6y < 12 is

A
$$y < \frac{1}{2}x - 2$$
 B $y > \frac{1}{2}x - 2$

$$(\mathbf{B}) > \frac{1}{2}x - 2$$

C
$$y < 2x - 2$$

D
$$y > 2x - 2$$


2. What linear inequality does the graph show?

(A)
$$y > \frac{3}{4}x + 4$$
 B $y \ge \frac{3}{4}x + 4$

B
$$y \ge \frac{3}{4} x + 4$$

C
$$y < \frac{3}{4}x + 4$$

C
$$y < \frac{3}{4}x + 4$$
 D $y \le \frac{3}{4}x + 4$

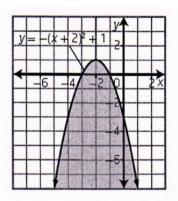
3. What is the solution set for the quadratic inequality $6x^2 - 7x - 20 < 0$?

$$A \mid \{x \mid x \le -\frac{4}{3} \text{ or } x \ge \frac{5}{2}, x \in \mathbb{R}\}$$

B
$$\{x \mid -\frac{4}{3} \le x \le \frac{5}{2}, x \in \mathbb{R}\}$$

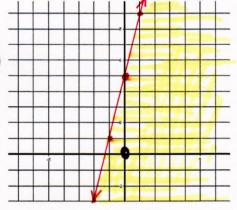
$$\mathbb{C}\{x \mid -\frac{4}{3} < x < \frac{5}{2}, x \in \mathbb{R}\}$$

D
$$\{x \mid x < -\frac{4}{3} \text{ or } x > \frac{5}{2}, x \in \mathbb{R}\}\$$


4. For the quadratic function q(x) shown in the graph, which of the following is true?

- A There are no solutions to q(x) > 0.
- **B**All real numbers are solutions to $q(x) \ge 0$.
- C All real numbers are solutions to $q(x) \le 0$.
- **D** All positive real numbers are solutions to q(x) < 0.

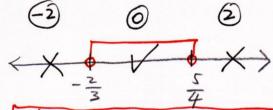
5. What quadratic inequality does the graph show?

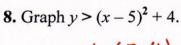

A
$$y < -(x+2)^2 + 1$$

B $y \ge -(x+2)^2 + 1$
C $y \le -(x+2)^2 + 1$
D $y > -(x+2)^2 + 1$

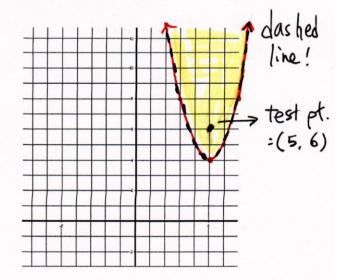
Short Answer

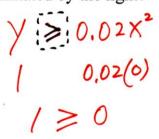
6. Graph $8x \ge 2(y - 5)$.

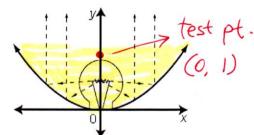

test pt: (0,0)
true!


7. Solve $12x^2 < 7x + 10$.

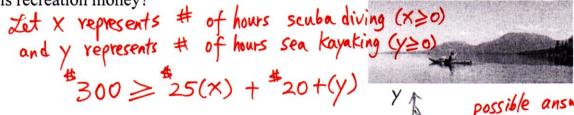
$$|2x^{2}-7x-10| < 0$$

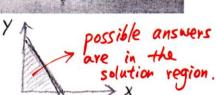

Find roots: /2 x - 7x - /0 = 0 (3x + 2)(4x - 5) = 0 X = - = 6 x X = =

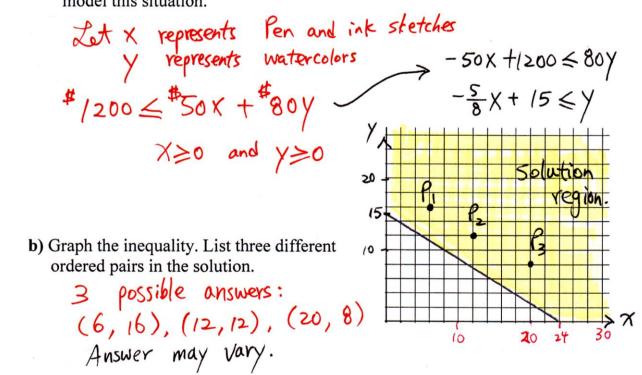

Solution: = < X < + , x < R



6 > (5-5) 24/ True!




9. Stage lights often have parabolic reflectors to make it possible to focus the beam of light, as indicated by the diagram. Suppose the reflector in a stage light is represented by the function $y = 0.02x^2$. What inequality can you use to model the region illuminated by the light?



10. While on vacation, Ben has \$300 to spend on recreation. Scuba diving costs \$25/h and sea kayaking costs \$20/h. What are all the possible ways that Ben can budget his recreation money?

- 11. Malik sells his artwork for different prices depending on the type of work. Pen and ink sketches sell for \$50, and watercolours sell for \$80.
 - a) Malik needs an income of at least \$1200 per month. Write an inequality to model this situation.

represent this new situation. Predict how the answer to this inequality will be related to your answer in part b).

$1400 \le 50 \times + 80 \text{ y}$ -50 \times + 2400 \left \text{foy}

-\frac{5}{8} \times + 30 \left \text{y}

This hew line is parallel to

the original line but with a greater y-intercept

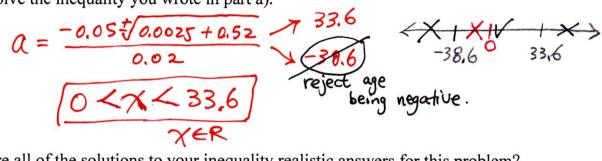
and yithout the sign of the

c) Suppose Malik now needs at least \$2400 per month. Write an inequality to

and x-intercept.

d) Solve the new inequality from part c) to check your prediction.

$$y \ge \frac{-5}{8} \times +30$$


$$\times \ge 0, \quad y \ge 0$$

- 12. The normal systolic blood pressure, p, in millimetres of mercury (mmHg), for a woman a years old is given by $p = 0.01a^2 + 0.05a + 107$.
 - a) Write an inequality that expresses the ages for which you expect systolic blood pressure to be less than 120 mmHg.

 Find roots. /20 =0.0/a+0.05a+107

$$0.01a^{2}+0.05a+107<120$$

 $0.01a^{2}+0.05a-13<0$

b) Solve the inequality you wrote in part a).

 $0 = 0.0/a^2 + 0.05a - /3$

c) Are all of the solutions to your inequality realistic answers for this problem? Explain why or why not.

The acceptable answer is from 0 to 33.6, because age can not be negative.