Date:

Block:

Multiple Choice For #1 to #5, choose the best answer.

1. The value of the expression $|-9-3|-|5-2^3|+|-7+1-4|$ is

A 13

C 21

D 25

2. The range of the function f(x) = |x - 3| is

A
$$\{y \mid y > 3, y \in \mathbb{R}\}$$

$$\mathbf{B} \{ y \mid y \ge 3, y \in \mathbf{R} \}$$

$$\mathbf{D}\left\{y\mid y\geq0,y\in\mathbf{R}\right\}$$

3. The absolute value equation |1 - 2x| = 9 has solution(s)

A
$$x = -4$$
 C $x = -5$ and $x = 4$

$$\mathbf{B} x = 5$$

$$\mathbf{D} x = -4 \text{ and } x = 5$$

4. The graph represents the reciprocal of which quadratic function?

$$Cf(x) = x^2 - x - 2$$

$$\mathbf{D}f(x) = x^2 + 3x + 2$$

5. One of the vertical asymptotes of the graph of the reciprocal function $y = \frac{1}{x^2 - 16}$ has equation

$$\mathbf{A} x = 0$$

$$\mathbf{B}x = 4$$

$$\mathbf{C} x = 8$$

D
$$x = 16$$

Short Answer

- **6.** Consider the function f(x) = |2x 5|.
 - a) Sketch the graph of the function.
 - b) Determine the intercepts.

$$x-int:(2.5,0)$$

 $y-int:(0,5)$

c) State the domain and range.

d) What is the piecewise notation form of the function?

$$y = \begin{cases} 2x-5; & x \ge 2.5, \ x \in \mathbb{R} \\ -2x+5; & x < 2.5, \ x \in \mathbb{R} \end{cases}$$

7. Solve the equation algebraically.

a)
$$|2w-3| = w+1$$

Case I
 $2W-3 = W+1$
 $W=4$

Case II

$$2W-3 = -W-1$$

 $3W = 2$
 $W = \frac{2}{3}$
 $check$
 $|2(4)-3| = 4+1 \lor$
 $|2(\frac{2}{3})-3| = \frac{2}{3}+1 \checkmark$

b)
$$|3x^2 - x| = 4x - 2$$

Case I $X = \frac{2}{3}$ $\sqrt{ }$
 $3X^2 - X = 4X - 2$ $X = | \sqrt{ }$
 $3X^2 - 5X + 2 = 0$
 $(3X - 2)(X - | 1) = 0$

8. Determine the error(s) in the following solution. Explain how to correct the solution.

Solve
$$|x - 4| = x^2 + 4x$$
.

Case 1

$$x + 4 = x^{2} + 4x$$

$$0 = x^{2} + 3x - 4$$

$$0 = (x + 4)(x - 1)$$

$$x + 4 = 0 \text{ or } x - 1 = 0$$

$$x = -4 \text{ or } x = 1$$

The solutions are x = -4, x = -1, and x = 1.

$$X = \frac{-5+\sqrt{41}}{2}$$
 $V = \frac{-5-\sqrt{41}}{2}$

- **9.** Consider the function f(x) = 3 2x.
 - a) Determine its reciprocal function.
 - b) State the equations of any vertical asymptotes of the reciprocal function.
 - c) Graph the function f(x) and its reciprocal function on the same axes.

a)
$$y = \frac{1}{3-2x}$$

- 10. A biologist studying Canada geese migration analysed the vee flight formation of a particular flock using a coordinate system, in metres. The centre of each bird was assigned a coordinate point. The lead bird has the coordinates (0, 0), and the coordinates of two birds at the ends of each leg are (6.2, 15.5) and (-6.2, 15.5).
 - a) Write an absolute value function whose graph contains each leg of the vee formation.

$$M = \frac{15.5 - 0}{6.2 - 0} = 2.5$$

$$Y = \left| 2.5 \times \right|$$

b) What is the angle between the legs of the vee formation, to the nearest tenth of a degree?

Let θ be the referce angle [linear equation: $m \times + b = y$] shown in the grid. $\theta = \tan^{-1}(\frac{15.5}{6.2}) \approx 68.2$ [$\theta = 43.6$] $\theta = 43.6$] The angle between the legs of the Vee formation is $\frac{43.6}{6.2}$

c) The absolute value function y = |2.8x| describes the flight pattern of a different flock of geese. What is the angle between the legs of this vee formation, to the nearest tenth of a degree?

$$\theta = \tan^{-1}(2.8) \approx 70.346^{\circ}$$

 $/80^{\circ} - 2(70.346^{\circ}) \approx 39.3^{\circ}$

The angle between the legs of this Vec formation is 39.3°.