Order of Operations with Integers

Adding and Subtracting Integers

We need to differentiate between the +/- sign and the add/ subtract operation

- the sign negative/positive represents position along the number line,
- add subtract represents movement on the number line

0

Eg. You owe \$5
Eg. You lose $\$ 7$ more

Ex 1. (a) $-2+8=$
(b) $-3-9=$
(c) $-4+(-3)-(-5)=$

- come up with a question and relate the \#'s to a situation like the examples
\square

Multiplication and Division of Integers
Double negatives cancel out
Negative statement : I dis like ice cream $=$ (- ice cream)
Double negative : I don't dis like ice cream
$(-) \times(-$ ice cream $)=(+$ ice cream $)$
Ex 2. (a) $-3 \times-2=$
(b) $(-2) \times 3 \times-7=$
(c) $(-18) \times(-4) \div(-6)=$
odd \# of negatives give you negative, even \# of negatives give you positive

Exponents

$(-3)^{2} \neq-3^{2} *$ Exponents only affects what is directly below it!*
$\begin{array}{cc}\downarrow & \downarrow \\ 9 & -9\end{array}$
Ex 3. (a) $(-7)^{3}=$
(b) $-(2)^{4}=$
(c) $-3^{2} \times(-2)^{3}$

Absolute Value

Absolute value are special brackets, two straight lines \mid

- Like brackets, you must do the operations inside first.
- The difference is that the number inside gets changed to a positive before you remove the brackets

Eg. $\left|\begin{array}{c}-2 \\ -2 \\ \mid+2\end{array}\right|=+2<$ doesn't change the positives
Eg 2. $|5-9| \rightarrow|-4| \rightarrow+4$ Work out the inside before you change the sign

- one way to look at absolute value is the distance that a number is from zero on the number line.

Ex 4. (a) $|-4-2|=$
(b) $|-5+9|=$
(c) $|(-3) \times(-4) \times(-1)|=$
web site for practice: http://regentsprep.org/Regents/math/absvalue/PracAbs.htm

